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Published online: 15 May 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006

Abstract. It is reviewed how Compton scattering sum rules relate low-energy nucleon structure quantities
to the nucleon excitation spectrum. In particular, the GDH sum rule and recently proposed extensions of it
will be discussed. These extensions are sometimes more calculationally robust, which may be an advantage
when estimating the chiral extrapolations of lattice QCD results, such as for anomalous magnetic moments.
Subsequently, new developments in our description of the nucleon excitation spectrum will be discussed,
in particular a recently developed chiral effective field theory framework for the ∆(1232)-resonance region.
Within this framework, we discuss results on N and ∆ masses, the γN∆ transition and the ∆ magnetic
dipole moment.

PACS. 25.20.Dc Photon absorption and scattering – 12.39.Fe Chiral Lagrangians – 13.40.Gp Electromag-
netic form factors – 13.40.Em Electric and magnetic moments

1 Introduction

Sum rules for Compton scattering off a nucleon offer a
unique tool to relate low energy nucleon structure quan-
tities to the nucleon excitation spectrum [1]. E.g., the
Gerasimov, Drell, Hearn (GDH) sum rule (SR) [2] relates a
system’s anomalous magnetic moment to a weighted inte-
gral over a combination of doubly polarized photoabsorp-
tion cross sections. Impressive experimental programs to
measure these photoabsorption cross-sections for the nu-
cleon have recently been carried out at ELSA and MAMI
(for a review see ref. [3]). Such measurements provide an
empirical test of the GDH SR, and can be used to gen-
erate phenomenological estimates of electromagnetic po-
larizabilities via related SRs. The GDH SR is particularly
interesting because both its left- and right-hand-sides can
be reliably determined, thus providing a useful verifica-
tion of the fundamental principles (such as unitarity and
analyticity) which go into its derivation. At the present
time, it has been established that the proton sum rule is
satisfied within the experimental precision, while the case
is still out for the neutron.

After a lightning review of the GDH and related sum
rules in sect. 2, I discuss a recently proposed linearized ver-
sion of the GDH sum rule [4,5]. When applying this new
sum rule to the nucleon in the context of chiral perturba-
tion theory, it allows for an elementary calculation (to one
loop) of quantities such as magnetic moments and polariz-
abilities to all orders in the heavy-baryon expansion. The
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chiral behavior of the nucleon magnetic moment allows to
make a link with lattice QCD calculations.

Subsequently, the nucleon excitation spectrum is dis-
cussed in sect. 3. Many Compton scattering sum rules,
such as the GDH sum rule, are dominated by the ∆(1232)
resonance. I discuss a recently proposed relativistic chi-
ral effective field theory as a new systematic framework
to both extract resonance properties from the experiment
and to perform a chiral extrapolation of lattice QCD re-
sults for those resonance properties.

2 Sum rules in Compton scattering

2.1 Derivation of forward Compton scattering sum
rules

The forward-scattering amplitude describing the elastic
scattering of a photon on a target with spin s (real Comp-
ton scattering) is characterized by 2s+ 1 scalar functions
which depend on a single kinematic variable, e.g., the pho-
ton energy ν. In the low-energy limit each of these func-
tions corresponds to an electromagnetic moment—charge,
magnetic dipole, electric quadrupole, etc.—of the target.
In the case of a spin-1/2 target, such as the nucleon, the
forward Compton amplitude is generally written as

T (ν) = ε
′∗ · ε f(ν) + iσ · (ε ′∗ × ε) g(ν) , (1)

where ε, ε ′ is the polarization vector of the incident and
scattered photon, respectively, while σ are the Pauli ma-
trices representing the dependence on the target spin. The



72 The European Physical Journal A

crossing symmetry of the Compton amplitude of eq. (1)
means invariance under ε′ ↔ ε, ν ↔ −ν, which obviously
leads to f(ν) being an even and g(ν) being an odd function
of the energy : f(ν) = f(−ν), g(ν) = −g(−ν). The two
scalar functions f(ν), g(ν) admit the following low-energy
expansion:

f(ν) = −
e2

4πM
+ (αE + βM ) ν2 +O(ν4), (2)

g(ν) = −
e2κ2

8πM2
ν + γ0ν

3 +O(ν5), (3)

and hence, in the low-energy limit, are given in terms of
the target’s charge e, mass M , and anomalous magnetic
moment (a.m.m.) κ. The next-to-leading order terms are
given in terms of the nucleon electric (αE), magnetic (βM ),
and forward spin (γ0) polarizabilities.

In order to derive sum rules (SRs) for these quanti-
ties one assumes the scattering amplitude is an analytic
function of ν everywhere but the real axis, which allows
writing the real parts of the functions f(ν) and g(ν) as
a dispersion integral involving their corresponding imagi-
nary parts. The latter, on the other hand, can be related to
combinations of doubly polarized photoabsorption cross-
sections via the optical theorem,

Im f(ν) =
ν

8π

[

σ1/2(ν) + σ3/2(ν)
]

, (4)

Im g(ν) =
ν

8π

[

σ1/2(ν)− σ3/2(ν)
]

, (5)

where σλ is the doubly-polarized total cross-section of the
photoabsorption processes, with λ specifying the total he-
licity of the initial system. Averaging over the polarization
of initial particles gives the total unpolarized cross-section,
σT = 1

2 (σ1/2 + σ3/2).
After these steps one arrives at the results (see, e.g., [1]

for more details):

f(ν) = f(0) +
ν2

2π2

∫ ∞

0

σT (ν
′)

ν′2 − ν2 − iε
dν′, (6)

g(ν) = −
ν

4π2

∫ ∞

0

∆σ(ν′)

ν′2 − ν2 − iε
ν′ dν′, (7)

with ∆σ ≡ σ3/2 − σ1/2, and where the sum rule for
the unpolarized forward amplitude f(ν) has been once-
subtracted to guarantee convergence. These relations can
then be expanded in energy to obtain the SRs for the dif-
ferent static properties introduced in eqs. (2), (3). In this
way we obtain the Baldin SR [6,7]:

αE + βM =
1

2π2

∫ ∞

0

σT (ν)

ν2
dν, (8)

the GDH SR:

e2κ2

2M2
=

1

π

∫ ∞

0

∆σ(ν)

ν
dν, (9)

a SR for the forward spin polarizability:

γ0 = −
1

4π2

∫ ∞

0

∆σ(ν)

ν3
dν, (10)

and, in principle, one could continue in order to isolate
higher-order moments [8].

Recently, the helicity difference ∆σ which enters the
integrands of eqs. (9) and (10) has been measured. The
first measurement was carried out at MAMI (Mainz) for
photon energies in the range 200MeV < ν < 800MeV [9,
10], and was extended at ELSA (Bonn) [11] for ν up to
3GeV. This difference, shown in fig. 1, fluctuates much
more strongly than the total cross section σT . The thresh-
old region is dominated by S-wave pion production, and
therefore mostly contributes to the cross section σ1/2. In
the region of the ∆(1232) with spin J = 3/2, both helicity
cross sections contribute, but since the transition is essen-
tially M1, we find σ3/2/σ1/2 ≈ 3. As seen from fig. 1, σ3/2

also dominates the proton photoabsorption cross section
in the second and third resonance regions.
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Fig. 1. The helicity difference σ3/2(ν) − σ1/2(ν) for the pro-
ton. The calculations include the contribution of πN interme-
diate states (dashed curve) [12], ηN intermediate state (dotted
curve) [13], and the ππN intermediate states (dashed-dotted
curve) [14]. The total sum of these contributions is shown by
the full curves. The MAMI data are from ref. [9,10] and the
ELSA data from ref. [11].

2.2 Linearized GDH sum rule

Recently, it was shown that by taking derivatives of the
GDH sum rule with respect to the a.m.m. one can ob-
tain a new set of sum-rule–like relations with intriguing
properties [4,5].

To derive such sum rules. one begins by introducing a
“classical” (or “trial”) value of the particle’s a.m.m., κ0.
At the Lagrangian level this amounts to the introduction
of a Pauli term for the spin-1/2 field :

LPauli =
iκ0

4M
ψ̄ σµν ψ F

µν , (11)
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Fig. 2. Chiral behavior of proton and neutron magnetic mo-
ments (in nucleon magnetons) to one loop compared with lat-
tice data (solid circles). “SR” (dotted lines): one-loop relativis-
tic result based on eq. (12), “IR” (blue long-dashed lines):
infrared-regularized relativistic result, “HB” (green dashed
lines): leading non-analytic term in the heavy-baryon expan-
sion. Red solid lines: single-parameter fit based on the SR re-
sult, see refs. [4,5]. The open diamonds represent the experi-
mental values at the physical pion mass.

where Fµν is the electromagnetic field tensor and σµν =
(i/2)[γµ, γν ] is the usual Dirac tensor operator. At the end
of the calculation, κ0 is set to zero, but in the evaluation of
the absorption cross sections the total value of the a.m.m.
is κ = κ0 + δκ, with δκ denoting the loop contribution. It
was shown in ref. [4,5] that this yields the SR :

4π2αem
M2

κ =

∫ ∞

0

∆σ′(ν)|κ0=0

dν

ν
, (12)

where ∆σ′(ν) is the derivative of an absorption cross sec-
tion w.r.t. the trial a.m.m. value κ0. The striking feature
of this sum rule is the linear relation between the a.m.m.
and the (derivative of the) photoabsorption cross section,
in contrast to the GDH SR where κ appears quadratically.
Although the cross-section quantity ∆σ′(ν) is not an ob-
servable, it is very clear how it can be determined within
a specific theory. Thus, for example, the first derivative of
the tree-level cross-section with respect to κ0, at κ0 = 0,
in QED was worked out in ref. [4], yielding Schwinger’s
one-loop result. It is noteworthy that this result is repro-
duced by computing only a (derivative of the) tree-level
Compton scattering cross-section and then performing an
integration over energy. This is definitely much simpler
than obtaining the Schwinger result from the GDH SR di-
rectly [15], which requires an input at the one-loop level.

The SR of eq. (12) can furthermore be applied to study
the magnetic moment and polarizabilities of the nucleon in
a relativistic chiral EFT framework [4,5]. In particular it
allows to study the chiral extrapolation of these quantities,
as shown in fig. 2 for the magnetic moments. One sees that
the SR calculation, strictly satisfying analyticity, is better
suited for the chiral extrapolation of lattice QCD results
than the usual heavy-baryon expansions or the “infrared-
regularized” relativistic theory.

3 Nucleon excitation spectrum

The sum rules for Compton scattering off the nucleon are
dominated by its first excited state — the ∆(1232) reso-

nance, as is apparent from fig. 1. Through the sum rules,
the ∆ therefore plays a preponderant role in our under-
standing of low-energy nucleon structure. This justifies a
dedicated effort to study this resonance.

High-precision measurements of the N -to-∆ transition
by means of electromagnetic probes became possible with
the advent of the new generation of electron scattering
facilities, such as BATES, MAMI, and JLab, many mea-
surements being completed in recent years [16,17,18,19].

The electromagnetic nucleon-to-∆ (or, in short γN∆)
transition is predominantly of the magnetic dipole (M1)
type. In a simple quark-model picture, this M1 transition
is described by a spin flip of a quark in the s-wave state.
Any d-wave admixture in the nucleon or the ∆ wave-
functions allows for the electric (E2) and Coulomb (C2)
quadrupole transitions. Therefore by measuring these one
is able to assess the presence of the d-wave components
and hence quantify to which extent the nucleon or the ∆
wave-function deviates from the spherical shape, i.e., to
which extent they are “deformed” [20]. The γN∆ tran-
sition, on the other hand, was accurately measured in
the pion photo- and electro-production reactions in the
∆-resonance energy region. The E2 and C2 transitions
were found to be relatively small at moderate momentum-
transfers (Q2), the ratios REM = E2/M1 and RSM =
C2/M1 are at the level of a few percent.

Traditionally, the resonance parameters are extracted
by using unitary isobar models [21,22,23,24,25,12,26],
which in essence are unitarized tree-level calculations
based on phenomenological Lagrangians. However, at low
Q2 the γN∆-transition shows great sensitivity to the
“pion cloud”, which until recently could only be compre-
hensively studied within dynamical models [27,28,29,30,
31,32], which — unlike the isobar models — include quan-
tum effects due to pion loops.

With the advent of the chiral effective field the-
ory (χEFT) of QCD [33,34] and its extensions to the
∆(1232) region [35,36,37,38,39,40], it has become pos-
sible to study the nucleon and ∆-resonance properties
in a profoundly different way. Recently, first relativistic
χEFT studies were performed of the γN∆-transition in
pion electroproduction [41,42] and of the ∆(1232) mag-
netic dipole moment (MDM) in the radiative pion pho-
toproduction [43]. The advantages over the previous dy-
namical approaches are apparent: χEFT is a low-energy
effective field theory of QCD and as such it provides a
firm theoretical foundation, with all the relevant symme-
tries and scales of QCD built in consistently.

The χEFT of the strong interaction is indispensable,
at least at present, in relating the low-energy observables
(e.g., hadron masses, magnetic moments, form factors) to
ab initio QCD calculations on the lattice. On the other
hand, χEFT can and should be used in extracting vari-
ous hadronic properties from the experiment. The χEFT
fulfills both of these roles in a gratifying fashion.

The following sections review recent progress in the
χEFT in the ∆-resonance region that has been obtained
for the N and ∆ masses [44], the γN∆ transition [41,42],
and the ∆ MDM [43].
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3.1 Chiral effective field theory in the ∆(1232) region

Starting from the effective Lagrangian of chiral pertur-
bation theory (χPT) with pion and nucleon fields [45],
the ∆ is included explicitly in the so-called δ-expansion
scheme [39]. In the following, the Lagrangian L(i) is or-
ganized such that superscript i stands for the power of
electromagnetic coupling e plus the number of derivatives
of pion and photon fields. Writing here only the terms in-
volving the spin-3/2 isospin-3/2 field ∆µ of the ∆-isobar
gives:1

L
(1)
N∆ = ∆µ (iγ

µναDα −M∆ γ
µν)∆ν

+
ihA

2fπM∆

{

N Ta γ
µνλ (∂µ∆ν)Dλπ

a +H.c.
}

−
HA

2M∆fπ
εµνρσ∆µ T

a (∂ρ∆ν) ∂σπ
a, (13)

L
(2)
N∆ =

ie(µ∆ − 1)

2M∆
∆µ∆ν F

µν

+
3iegM

2MN (MN +M∆)

{

N T3 ∂µ∆ν F̃
µν +H.c.

}

−
ehA

2fπM∆

{

N Ta γ
µνλAµ∆ν ∂λπ

a +H.c.
}

, (14)

L
(3)
N∆ =

−3e

2MN (MN +M∆)
N T 3γ5 [gE(∂µ∆ν)

+
igC
M∆

γα(∂α∆ν − ∂ν∆α) ∂µ

]

Fµν +H.c., (15)

where MN and M∆ are, respectively, the nucleon and ∆-
isobar masses, N and πa (a = 1, 2, 3) stand for the nu-
cleon and pion fields, Dµ is the covariant derivative en-

suring the electromagnetic gauge-invariance, F µν and F̃µν

are the electromagnetic field strength and its dual, Ta are
the isospin 1/2 to 3/2 transition matrices, and T a are
the generators in the isospin 3/2 representation of SU(2),
satisfying T aT a = 5/3. The coupling constants are given
by : fπ = 92.4MeV, hA ' 2.85 is obtained from the ∆-
resonance width, Γ∆ = 0.115GeV, and for HA the large-
Nc relation HA = (9/5)gA is adopted, with gA ' 1.267
the nucleon axial-coupling constant.

Note that the electric and the Coulomb γN∆ couplings
(gE and gC , respectively) are of one order higher than the
magnetic (gM ) one, because of the γ5 which involves the
“small components” of the fermion fields and thus intro-
duces an extra power of the 3-momentum. The MDM µ∆
is defined here in units of [e/2M∆]. Higher electromagnetic
moments are omitted, because they do not contribute at
the orders that we consider.

Note that L
(1)
∆ contains the free Lagrangian, which is

formulated in [46] such that the number of spin degrees of
freedom of the relativistic spin-3/2 field is constrained to
the physical number: 2s + 1 = 4. The N to ∆ transition
couplings in eqs. (13,14,15) are consistent with these con-
straints [47,48,49]. The γ∆∆ coupling is more subtle since

1 Here we introduce totally antisymmetric products of γ-
matrices: γµν = 1

2
[γµ, γν ], γµνα = 1

2
{γµν , γα} = iεµναβγβγ5.

in this case constraints do not hold for sufficiently strong
electromagnetic fields, see, e.g., [50]. In extracting the ∆
MDM, it is therefore assumed that the electromagnetic
field is weak, compared to the ∆ mass scale.

The inclusion of the ∆-resonance introduces another
light scale — besides the pion mass — in the theory, the
resonance excitation energy: ∆ ≡ M∆ −MN ∼ 0.3GeV.
This energy scale is still relatively light in comparison
to the chiral symmetry breaking scale ΛχSB ∼ 1GeV.
Therefore, δ = ∆/ΛχSB can be treated as a small param-
eter. The question is, how to compare this parameter with
the small parameter of chiral perturbation theory (χPT),
ε = mπ/ΛχSB .

In most of the literature (see, e.g., refs. [35,36,37,38,
40]) they are assumed to be of comparable size, δ ≈ ε.
This, however, leads to a somewhat unsatisfactory result
because obviously the ∆-contributions are overestimated
at lower energies and underestimated at the resonance
energies. To estimate the ∆-resonance contributions cor-
rectly, and depending on the energy region, one needs to
count δ and ε differently.

A relation ε = δ2 was suggested and explored in [39],
and is referred to as the δ-expansion. The second power is
indeed the closest integer power for the relation of these
parameters in the real world. In refs. [44,41,42,43] this re-
lation was used for power-counting purposes only, and was
not imposed in the actual evaluations of diagrams. Each
diagram is simply characterized by an overall δ-counting
index n, which tells us that its contribution begins at
O(δn).

Because of the distinction of mπ and ∆ the counting
of a given diagram depends on whether the characteristic
momentum p is in the low-energy region (p ∼ mπ) or in
the resonance region (p ∼ ∆). In the low-energy region the
index of a graph with L loops, Nπ pion propagators, NN

nucleon propagators, N∆ ∆-propagators, and Vi vertices
of dimension i is

n = 2

(

∑

i

iVi + 4L−NN − 2Nπ

)

−N∆ ≡ 2nχPT −N∆,

(16)
where nχPT is the index in χPT with no ∆’s [45]. In the
resonance region, one distinguishes the one-∆-reducible
(O∆R) graphs [39]. Such graphs contain ∆ propagators
which go as 1/(p − ∆), and hence for p ∼ ∆ they are
large and all need to be included. This gives an incen-
tive, within the power-counting scheme, to resum ∆ con-
tributions. Their resummation amounts to dressing the ∆
propagators so that they behave as 1/(p − ∆ − Σ). The
self-energy Σ begins at order p3 and thus a dressed O∆R
propagator counts as 1/δ3. If the number of such propa-
gators in a graph is NO∆R, the power-counting index of
this graph in the resonance region is given by

n = nχPT −N∆ − 2NO∆R, (17)

where N∆ is the total number of ∆-propagators.
A word on the renormalization program, as it is an

indivisible part of power counting in a relativistic theory.
Indeed, without some kind of renormalization the loop
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graphs diverge as ΛN , where Λ is an ultraviolet cutoff,
and N is a positive power proportional to the power-
counting index of the graph. Also, contributions of heavy
scales, such as baryon masses, may appear as MN . The
renormalization of the loop graphs can and should be per-
formed so as to absorb these large contributions into the
available low-energy constants, thus bringing the result in
accordance with power counting [51].

To give an example, consider the one-πN -loop con-
tribution to the nucleon mass. For the πNN vertex,
the power counting tells us that this contribution be-
gins at O(m3

π). An explicit calculation, however, will show
(e.g., [45]) that the loop produces O(m0

π) and O(m2
π)

terms, both of which are (infinitely) large. This is not a
violation of power counting, because there are two low-
energy constants: the nucleon mass in the chiral limit,
M (0), and c1N , which enter at order O(m0

π) and O(m2
π),

respectively, and renormalize away the large contributions
coming from the loop. The renormalized relativistic result,
up to and including O(m3

π), can be written as [44]:

MN = M
(0)
N − 4 c1N m

2
π (18)

−
3 g2

A

(8πfπ)2
m3
π

{

4

(

1−
m2
π

4M2
N

)5/2

arccos
mπ

2MN

+
17mπ

16MN
−

(

mπ

2MN

)3

+
mπ

8MN

[

30− 10

(

mπ

MN

)2

+

(

mπ

MN

)4
]

ln
mπ

MN

}

,

and one can easily verify that the loop contribution begins
at O(m3

π) in agreement with power counting.
Likewise, the ∆ mass has also been calculated in rela-

tivistic χEFT see ref. [44] for details.
The mπ dependence of the nucleon and ∆-resonance

masses are compared with lattice results in fig. 3. One of
the two parameters in eq. (18) is constrained by the physi-
cal nucleon mass value atmπ = 0.139GeV, while the other
parameter is fit to the lattice data shown in the figure.

This yields : M
(0)
N = 0.883GeV and c1N = −0.87GeV−1.

As is seen from the figure, with this two-parameter form
forMN , a good description of lattice results is obtained up
to m2

π ' 0.5GeV2. Analogously to the nucleon case, one
low-energy constant for the ∆ is fixed from the physical
value of the ∆ mass, while the second parameter is fit to

the lattice data shown in fig. 3, yielding :M
(0)
∆ = 1.20GeV

and c1∆ = −0.40GeV−1. As well as for the nucleon, this
two-parameter form for M∆ yields a fairly good descrip-
tion of the lattice results up to m2

π ' 0.5GeV2.

3.2 γN∆ transition

The γN∆ transition is usually studied through the pion
electroproduction process. The pion electroproduction
amplitude to NLO in the δ expansion, in the resonance
region, is given by graphs in fig. 4(a) and (b), where the
shaded blobs in graph (a) include corrections depicted in

∆

N

mπ 2 (GeV2)

M
 (G

eV
)

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0 0.1 0.2 0.3 0.4 0.5

Fig. 3. Pion-mass dependence of the nucleon and ∆(1232)
masses. The curves are two-parameter expressions for the πN
loop contributions to MN and M∆ as calculated in ref. [44]
(see text for the values of the low-energy constants). The red
squares are lattice results from the MILC Collaboration [52].
The stars represent the physical mass values.

(a) (b)

(c)

ρ

(d) (e) (f)

Fig. 4. Diagrams for the eN → eπN reaction at NLO in the
δ-expansion. Double lines represent the ∆ propagators.

fig. 4(c–f). The hadronic part of graph (a) begins at O(δ0)
which here is the leading order. The Born graphs (b) con-
tribute atO(δ). The one-loop vertex corrections of fig. 4(e)
and (f) to the γN∆-transition form factors have been eval-
uated in two independent ways in refs. [41,42], to which
we refer for details. At NLO there are also vertex cor-
rections of the type (e) and (f) with nucleon propagators
in the loop replaced by the ∆-propagators. However, after
the appropriate renormalizations and Q2 ¿ ΛχSB∆, these
graphs start to contribute at next-next-to-leading order.
The vector-meson diagram, fig. 4(d), contributes to NLO
forQ2 ∼ ΛχSB∆. It was included effectively in refs. [41,42]
by giving the gM -term a dipole Q2-dependence, in anal-
ogy to how it is usually done for the nucleon isovector
form factor.

The resonant pion photoproduction multipoles are
used to determine the two low-energy constants: gM and
gE , the strength of the M1 and E2 γN∆ transitions.
In fig. 5, we show the result of the χEFT calculations

for the pion photoproduction resonant multipoles M
(3/2)
1+

and E
(3/2)
1+ , around the resonance position, as function of

the total c.m. energy W of the πN system. These two
multipoles are well established by the MAID [12] and
SAID [53] partial-wave solutions which allow us to fit
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Fig. 5. Multipole amplitudes M
(3/2)
1+ (top panels) and E

(3/2)
1+

(bottom panels) for pion photoproduction as function of the in-
variant massW of the πN system. Dashed curves: ∆ contribu-
tion without the γN∆-vertex corrections, (i.e., fig. 4(a) with-
out fig. 4(e, f)). Dotted curves: adding the Born contributions,
fig. 4(b), to the dashed curves. Solid curves: complete NLO
calculation, includes all graphs from fig. 4. In all curves the
low-energy parameters are chosen as : gM = 2.9, gE = −1.0.
The data point are from the SAID analysis (FA04K) [53] (red
circles), and from the MAID 2003 analysis [12] (blue squares).

the two low-energy constants of the chiral Lagrangian of
eqs. (14,15) as : gM = 2.9, gE = −1.0. As is seen from
fig. 5, with these values the NLO results (solid lines) give
a good description of the energy dependence of the reso-
nant multipoles in a window of 100MeV around the ∆-
resonance position. Also, these values yield REM = −2.3
%, in a nice agreement with experiment [16].

The dashed curves in fig. 5 show the contribution of
the ∆-resonant diagram of fig. 4(a) without the NLO ver-
tex corrections fig. 4(e, f). For the M1+ multipole this is
the LO contribution. For the E1+ multipole the LO con-
tribution is absent (the gE coupling is of one order higher
than gM ). Hence, the dashed curve represents a partial
NLO contribution to E1+ therein. Upon adding the non-
resonant Born graphs, fig. 4(b), to the dashed curves one
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Fig. 6. χEFT NLO results for the Θπ dependence of the γ∗p→
π0p cross sections at W = 1.232GeV and Q2 = 0.127GeV2.
The theoretical error bands are described in the text. Data
points are from BATES experiments [18,54].

obtains the dotted curves in fig. 5. These non-resonant
contributions are purely real at this order and do not af-
fect the imaginary part of the multipoles. One sees that
the resulting calculation is flawed because the real parts
of the resonant multipoles now fail to cross zero at the res-
onance position and hence unitarity, in the sense of Wat-
son’s theorem [55], is violated. The complete NLO calcu-
lation, shown by the solid curves in fig. 5, includes in addi-
tion the vertex corrections, fig. 4(e, f), which restore uni-
tarity exactly. Watson’s theorem is satisfied exactly by the
NLO, up to-one-loop amplitude given the graphs in fig. 4.

Figure 6 shows the NLO results for different vir-
tual photon absorption cross sections (for definitions,
see ref. [42]) at the resonance position, and for Q2 '
0.127GeV2, where recent precision data are available. Be-
sides the low-energy constants gM and gE , which were
fixed from the resonant multipoles in fig. 5, the only other
low-energy constant from eq. (15) entering the NLO elec-
troproduction calculation is gC . The main sensitivity on
gC enters in σLT . A best description of the σLT data in
fig. 6 is obtained by choosing gC = −2.36.

The theoretical uncertainty due to the neglect of
higher-order effects was estimated in ref. [42]. We know
that they must be suppressed by at least one power of δ
(= ∆/ΛχSB) as compared to the NLO and two powers of
δ as compared to the LO contributions. These error esti-
mates are shown by the bands in fig. 6. One sees that the
NLO χEFT calculation, within its accuracy, is consistent
with the experimental data for these observables.

Figure 7 shows the Q2 dependence of the ratios REM
and RSM . Having fixed the low energy constants gM , gE
and gC , this Q

2 dependence follows as a prediction. The
theoretical uncertainty here (shown by the error bands)
was also estimated in ref. [42] over the range of Q2 from 0
to 0.2GeV2. One sees that the NLO calculations are con-
sistent with the experimental data for both of the ratios.
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Fig. 8. mπ dependence of the NLO results at Q2 = 0.1GeV2

for REM (upper panel) and RSM (lower panel). The blue cir-
cle is a data point from MAMI [56], the green squares are
data points from BATES [18]. The three filled black diamonds
at larger mπ are lattice calculations [58], whereas the open
diamond near mπ ' 0 represents their extrapolation assum-
ing linear dependence in m2

π. Solid curves: NLO result when
accounting for the mπ dependence in MN and M∆; Dashed
curves: NLO result of ref. [41], where the mπ-dependence of
MN and M∆ was not accounted for.

Figure 8 shows the mπ-dependence of the ratios REM
and RSM and compares them to lattice QCD calculations.
The recent state-of-the-art lattice calculations of REM
and RSM [58] use a linear, in the quark mass (mq ∝ m

2
π),

extrapolation to the physical point, thus assuming that the
non-analyticmq-dependencies are negligible. The thus ob-
tained value for RSM at the physical mπ value displays a
large discrepancy with the experimental result, as seen
in fig. 8. The relativistic χEFT calculation, on the other
hand, shows that the non-analytic dependencies are not
negligible. While at larger values of mπ, where the ∆ is
stable, the ratios display a smooth mπ dependence, at
mπ = ∆ there is an inflection point, and for mπ ≤ ∆ the
non-analytic effects are crucial.

One also notices from fig. 8 that there is only little
difference between the χEFT calculations with the mπ-
dependence of MN and M∆ accounted for, and an earlier
calculation [41], where the ratios were evaluated neglecting
the mπ-dependence of the masses.

Figure 8 also shows a theoretical uncertainty of the
ratios REM and RSM taken over the range of m2

π from 0
to 0.15GeV2. The mπ dependence obtained from χEFT
clearly shows that the lattice results for RSM may in fact
be consistent with experiment.

3.3 ∆(1232) magnetic dipole moment

Although the ∆(1232)-isobar is the most distinguished
and well-studied nucleon resonance, such a fundamen-
tal property as its magnetic dipole moment (MDM) has
thusfar escaped a precise determination. The problem is
generic to any unstable particle whose lifetime is too short
for its MDM to be measurable in the usual way through
spin precession experiments. A measurement of the MDM
of such an unstable particle can apparently be done only
indirectly, in a three-step process, where the particle is
first produced, then emits a low-energy photon which
plays the role of an external magnetic field, and finally
decays. In this way the MDM of ∆++ is accessed in the
reaction π+p → π+pγ [59,60] while the MDM of ∆+ can
be determined using the radiative pion photoproduction
(γp→ π0pγ′) [61].

A first experiment devoted to the MDM of ∆+ was
completed in 2002 [62]. The value extracted in this exper-
iment, µ∆+ = 2.7+1.0

−1.3(stat.) ± 1.5(syst.) ± 3(theor.) (nu-
clear magnetons), is based on theoretical input from the
phenomenological model [63,64] of the γp → π0pγ′ reac-
tion. To improve upon the precision of this measurement,
a dedicated series of experiments has recently been car-
ried out by the Crystal Ball Collaboration at MAMI [65].
These experiments achieve about two orders of magnitude
better statistics than the pioneering experiment [62]. The
aim of the investigation within χEFT was to complement
these high-precision measurements with an accurate and
model-independent analysis of the γp→ π0pγ′ reaction.

The optimal sensitivity of the γp → π0pγ′ reaction
to the MDM term is achieved when the incident photon
energy is in the vicinity of ∆, while the outgoing photon
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Fig. 9. Diagrams for the γp → π0pγ′ reaction at NLO in the
δ-expansion, considered in this work. Double lines represent
the ∆ propagators.
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Fig. 10. Pion mass dependence of the real (solid curves) and
imaginary (dashed curves) parts of ∆++ and ∆+ MDMs (in
nuclear magnetons). Dotted curve is the result for the proton
magnetic moment from ref. [4]. The experimental data point
for ∆++ is from PDG analysis [66]. Lattice data are from [67]
for ∆++ and from [68] for ∆+.

energy is of order of mπ. In this case the γp→ π0pγ′ am-
plitude to next-to-leading order (NLO) in the δ-expansion
is given by the diagrams of fig. 9(a - c), where the shaded
blobs, in addition to vertices from eqs. (13,14,15), contain
the one-loop corrections shown in fig. 9(d - f). The contri-
butions to µ∆ of diagrams (e) and (f) in fig. 9 have been
calculated in ref. [43], to which we refer for technical de-
tails. The evaluation of these loop diagrams also allows to
quantify the mπ dependence of µ∆ which can be used to
compare with lattice QCD results. As all lattice data for
µ∆ at present and in the foreseeable future are for larger
than the physical values of mπ, their comparison with ex-
periment requires the knowledge of the mπ-dependence
for this quantity. Figure 10 shows the pion mass depen-
dence of real and imaginary parts of the ∆+ and ∆++

MDMs, according to our one-loop calculation. Each of the
two solid curves has a free parameter, the counterterm µ∆
from L

(2)
N∆, adjusted to agree with the lattice data at larger

values of mπ. As can be seen from fig. 10, the ∆ MDM
develops an imaginary part when mπ < ∆ = M∆ −M ,
whereas the real part has a pronounced cusp at mπ = ∆.

For µ∆+ , the curve is in disagreement with the trend of the
recent lattice data, which possibly is due to the “quench-
ing” in the lattice calculations. The dotted line in fig. 10
shows the result [4] for the magnetic moment for the pro-
ton. One sees that µ∆+ and µp, while having very distinct
behavior for small mπ, are approximately equal for larger
values of mπ.

We next discuss the χEFT results for the γp→ π0pγ′

observables. The NLO calculation of this process in the δ-
expansion corresponds with the diagrams of fig. 9. This
calculation completely fixes the imaginary part of the
γ∆∆ vertex. It leaves µ∆ as only free parameter, which en-

ters as a low energy constant in L
(2)
N∆. Thus the real part of

µ∆+ is to be extracted from the γp→ π0pγ′ observables,
some of which are shown in fig. 11 for an incoming photon
energy Elab

γ = 400MeV as function of the emitted photon
energy E′ c.m.

γ . In the soft-photon limit (E ′ c.m.
γ → 0), the

γp → π0pγ′ reaction is completely determined from the
bremsstrahlung process from the initial and final protons.
The deviations of the γp→ π0pγ′ observables, away from
the soft-photon limit, will then allow to study the sensi-
tivity to µ∆+ . It is therefore very useful to introduce the
ratio [64]:

R ≡
1

σπ
· E′

γ

dσ

dE′
γ

, (19)

where dσ/dE′
γ is the γp→ π0pγ′ cross section integrated

over the pion and photon angles, and σπ is the angular in-
tegrated cross section for the γp → π0p process weighted
with the bremsstrahlung factor, as detailed in [64]. This
ratio R has the property that in the soft-photon limit, the
low energy theorem predicts that R→ 1. From fig. 11 one
then sees that the χEFT calculation obeys this theorem.
This is a consequence of gauge-invariance which is main-
tained exactly throughout the calculation, also away from
the soft-photon limit.

The χEFT result for R shows clear deviations from
unity at higher outgoing photon energies, in good agree-
ment with the first data for this process [62]. The sensi-
tivity of the χEFT calculation to the µ∆ is a very promis-
ing setting for the dedicated second-generation experiment
which has recently been completed by the Crystal Ball
Coll. at MAMI [65]. It improves upon the statistics of the
first experiment (fig. 11) by at least two orders of magni-
tude and will allow for a reliable extraction of µ∆+ using
the χEFT calculation presented here.

Besides the cross section, the γp → π0pγ′ asymme-
tries for linearly and circularly polarized incident photons
have also been measured in the recent dedicated exper-
iment [65]. They are also shown in fig. 11. The photon
asymmetry for linearly polarized photons, Σ, at E ′

γ = 0

exactly reduces to the γp → π0p asymmetry. It is seen
from fig. 11 that the χEFT calculation is in good agree-
ment with the experimental value. At higher outgoing
photon energies, the photon asymmetry as predicted by
the NLO χEFT calculation remains nearly constant and
is very weakly dependent on µ∆. It is an ideal observable
for a consistency check of the χEFT calculation and to
test that the ∆ diagrams of fig. 9 indeed dominate the
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Fig. 11. The outgoing photon energy dependence of the
γp → π0pγ′ observables for different values of µ∆+ (in units
e/2M∆). Top panel: the ratio of γp→ π0pγ′ to γp→ π0p cross-
sections eq. (19). Data points are from [62]. Middle panel: the
linear-polarization photon asymmetry of the γp→ π0pγ′ cross-
sections differential w.r.t. the outgoing photon energy and pion
c.m. angle. The data point at E′

γ = 0 corresponds with the
γp → π0p photon asymmetry from [16]. Lower panel: the
circular-polarization photon asymmetry (as defined in [64]),
where the outgoing photon angles have been integrated over
the indicated range.

process. Mechanisms involving π-photoproduction Born
terms followed by πN rescattering have been considered
in model calculations [63,64]. In the δ-counting they start
contributing at next-next-to-leading order and therefore
will provide the main source of corrections to the present
NLO results.

The asymmetry for circularly polarized photons, Σcirc,
(which is exactly zero for a two-body process due to re-
flection symmetry w.r.t. the reaction plane) has been pro-
posed [64] as a unique observable to enhance the sensi-
tivity to µ∆. Indeed, in the soft-photon limit, where the
γp → π0pγ′ process reduces to a two-body process, Σcirc

is exactly zero. Therefore, its value at higher outgoing pho-
ton energies is directly proportional to µ∆. One sees from
fig. 11 (lower panel) that our χEFT calculation supports
this observation, and shows sizeably different asymmetries
for different values of µ∆. A combined fit of all three ob-
servables shown in fig. 11 will therefore allow for a very
stringent test of the χEFT calculation, which can then be
used to extract the ∆+ MDM.

4 Conclusions

It was discussed here how Compton scattering sum rules
relate low-energy nucleon structure quantities to the nu-
cleon excitation spectrum, with special emphasis on the
GDH sum rule. I demonstrated the utility of taking deriva-
tives of the GDH sum rule, in order to convert it to forms
which are sometimes more calculationally robust. In par-
ticular it was shown how it allows to estimate the chiral
extrapolations of lattice QCD results for anomalous mag-
netic moments of nucleons.

Subsequently, new developments in our description of
the nucleon excitation spectrum were discussed. In partic-
ular I reviewed recent work on a χEFT framework for the
∆(1232)-resonance region. This framework plays a dual
role, in that it allows for an extraction of resonance pa-
rameters from observables and predicts their mπ depen-
dence. In this way it may provide a crucial connection of
present lattice QCD results obtained at unphysical values
of mπ to the experiment. This was demonstrated here ex-
plicitely for the N and ∆ masses, the γN∆ transition and
the ∆ magnetic dipole moment. As the next-generation
lattice calculations of these quantities are on the way [69],
such a χEFT framework will, hopefully, complement these
efforts.
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of “cross-fertilization” between experiment and theory. On the
subject of two-photon physics, I like to thank in particular
Dieter Drechsel and Barbara Pasquini, for the many collabo-
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fruitful recent collaborations on the χEFT in the ∆-resonance
region. This work is supported in part by DOE grant no. DE-
FG02-04ER41302 and contract DE-AC05-84ER-40150 under
which SURA operates the Jefferson Laboratory.
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